
Introducing Parallel and Distributed Computing to K12

Brian Broll, Ákos Lédeczi,
Péter Völgyesi, János Sallai, Miklós Maróti

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN, USA

Email: akos.ledeczi@vanderbilt.edu

Chris Vanags

Center for Science Outreach
Vanderbilt University
Nashville, TN, USA

Abstract—The paper introduces a visual programming lan-
guage and corresponding web- and cloud-based development
environment called NetsBlox. NetsBlox is an extension of Snap!
and it builds upon its visual formalism as well as its open
source code base. NetsBlox adds distributed programming
capabilities to Snap! by introducing two simple abstractions:
messages and NetsBlox services. Messages containing data can
be exchanged by two or more NetsBlox programs running
on different computers connected to the Internet. Services
are called on a client program and are executed on the
NetsBlox server. These two abstractions make it possible to
create distributed programs, for example multi-player games
or client-server applications. We believe that NetsBlox provides
increased motivation to high-school students to become creators
and not just consumers of technology. At the same time, it helps
teach them basic distributed programming concepts.

Keywords-visual programming, distributed programming,
computer science education

I. INTRODUCTION

Computational thinking (CT) has been described as a

general analytic approach to problem solving, designing

systems, and understanding human behaviors [1], [2]. The

integration of CT within the K12 curriculum has also been

argued for by the ACM committee on K12 education [3].

There are many efforts around the world to introduce

young learners to computer programming, such as code.org,

Khan Academy, LEGO Mindstorms or the Raspberry Pi.

Visual programming languages have come to play a promi-

nent role in this movement and have been used to teach

children programming [4], [5] as well as using computa-

tional modeling to teach and learn science [6], [7]. However,

most of these efforts focus exclusively on the computer
and neglect an equally important concept, the network.

This is of course completely understandable: you need to

learn how to program a computer before you can create

networked/distributed applications. Nevertheless, some of

the most widely used computer applications today rely on

the network to provide their functionality. The web, texting,

Twitter, Facebook and other social networks, multiplayer

games, Pandora, Netflix, Amazon Echo, Siri, Google Maps

and YouTube are just a few of the most popular examples.

Even embedded systems are becoming networked at a rapid

pace with cars and home automation being the prime ex-

amples. Teaching distributed programming then constitutes

both a necessity and a great opportunity. It is a necessity,

because distributed computing is becoming part of basic

computer literacy. And it is also an opportunity, because

children already use the technology every day and their

natural curiosity will provide excellent motivation for them

to learn more about it.

We believe that it is not enough to introduce computer

programming into the K12 curriculum, but it also necessary

to teach distributed computing concepts to young learners.

At the college level, the ACM IEEE Computer Science

curriculum (2013) [8] advocates introducing the follow-

ing topics to CS students: asynchronous and synchronous

communication, reliable and unreliable protocols, and the

need for concurrency in operating systems. We argue that

with the help of a carefully designed visual representa-

tion, an intuitive user interface and a sophisticated cloud-

based infrastructure, it will be possible to teach some of

the key underlying concepts of distributed computation to

high school students. To this end, we have developed a

new learning environment called NetsBlox which extends

the visual programming paradigm of Scratch [4]. NetsBlox

introduces a few carefully selected abstractions that enables

children to create distributed computing applications [9].

The literature on educational computing is rife with

observations of children’s difficulties with learning basic

constructs of programming. Alleviating syntactic complex-

ity is an important pedagogical affordance of a visual

programming paradigm. In such an environment, students

construct programs using graphical objects on a drag-and-

drop interface [5]. This significantly reduces students’ chal-

lenges in learning the language syntax (compared to text-

based programming), and thus makes programming more

accessible to novices. Examples of some visual program-

ming environments are Snap! [10], [11], which itself is an

extension of Scratch [4], StarLogo TNG [12], and Alice [13].

We decided to base our research on Scratch [4] because

it is one of the most mature and widely used approaches

and we have significant experience using and teaching it.

A Scratch program consists of one or more sprites that can

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.81

323

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.81

323

have multiple visual representation (“Costumes”) and one or

more scripts. The program is executed on the “stage”. The

available computing blocks (instructions, operators, etc.) are

grouped by various color coded tabs according to their role,

e.g., operators, program control, variables, etc. The shapes of

the different blocks give a hint about their role, for example,

you can only insert hexagons as a condition into an if block

header. This prevents syntax errors altogether. As an illus-

tration of the power of Scratch, see a 10-block program that

plots the sound volume measured by the microphone of the

computer continuously at http://tinyurl.com/loudnessmeter.

Note that it is not only the intuitive and easy to learn visual

language but also the superb user interface that make Scratch

a great tool.

A. Understanding Concurrency

Although researchers have been investigating approaches

for teaching and learning computer programming in K12

classrooms, very few studies have looked at how K16

students can learn about concurrency. A few researchers

have pointed out that Scratch can be used productively

to introduce basic ideas of concurrency to novices [14],

[15]. Meerbaum-Salant et al. [14] investigated difficulties

experienced by students in understanding concurrency using

Scratch. They divided this concept in two categories: Type

I concurrency occurs when several sprites are executing

scripts simultaneously, such as sprites representing two

dancers. Type II concurrency occurs when a single sprite

executes more than one script simultaneously; for example,

a Pac-Man sprite moving through a maze while opening and

closing its mouth. They found that Type I concurrency seems

to be much more intuitive for students and easier to grasp.

Maloney, et al. [15] reported on an experiment where

Scratch was used by students in an after-school clubhouse.

These students were self-selected and self-paced, receiving

no formal instruction. By analyzing the students projects,

they found that the majority of the projects that actually

constructed executable scripts used both sequential and

concurrent execution. However, as the authors themselves

note: without realizing it, most Scratch users make use

of multiple threads (p. 368, our emphasis). The researchers

did not investigate if the use of concurrency demonstrates

understanding of this concept. The internalization of con-

cepts was measured by counting the portion of projects

using them. These measures were higher (about 50 %) for

user interaction and loops, lower for conditional statements

and for communications and synchronization (about 25 %),

and much lower for Boolean logic, variables and random

numbers (about 10 % or less).

II. NETSBLOX

Scratch is implemented in Flash. However, Snap! [11] is

an open source extension of Scratch written in JavaScript.

It is the tool of choice for the popular Beauty and Joy

of Computing high school course that originated at UC

Berkeley [16]. Therefore, we have built NetsBlox upon

Snap! [9] It constitutes an excellent starting point because

just like Scratch, it also supports concurrency. Sprites run

in parallel and each script runs in its own thread. The

keyboard and the mouse generate events that scripts can

handle and scripts can generate and handle custom events.

NetsBlox builds on these concepts to supply primitives

for synchronization and communication across computers
providing a gentle introduction to distributed computing.

We believe that the main appeal of NetsBlox is the

increased motivation it provides because young learners are

able to create new classes of programs that are currently out

of reach. For example, multi-player video games are very

popular with children and NetsBlox supports the creation

of non-trivial gaming programs. Real-time games with 3D

scene rendering are obviously beyond the realm of possi-

bilities. However, strategy games, turn-based board games

and games that include slower paced animation are quite

feasible. In addition, NetsBlox applications can be hosted

on phones and tablets. Just imagine an average high school

student creating a multi-player game, running it on her phone

and playing against a friend over the Internet after just a few

weeks of instruction. That is the promise of NetsBlox.

Furthermore, there are a large number of publicly avail-

able interesting data sets on the web. Examples include the

weather, air pollution, seismic data, real-time traffic infor-

mation and many others. Typically the data is visualized on

a given website, but in many cases a public API is available

to access the data programmatically. The NetsBlox server

already provides access to a select set of interesting data

sources. These are available from NetsBlox programs via

a simple abstraction called NetsBlox Services. Essentially

these services provide a mapping between NetsBlox service

calls and the corresponding API of the public data service.

For example, the NetsBlox Weather Service has a function

called “temp” that takes arguments for the location and

returns the corresponding temperature. A second function

returns a weather icon representing the current conditions.

On the NetsBlox server, they silently invoke the proper call

on the OpenWeatherMap API to get the data.

The possibilities are quite literally limitless. With Nets-

Blox, children are able to create all kinds of imaginative

applications that utilize the wealth of information available

on the web provided to them using a single, simple ab-

straction. One potential difficulty is that much of the data

are geospatial. To help students make use of it, NetsBlox

integrates Google Maps as an interactive background, again,

using services. See Figure 1. Displaying real-time data on

an interactive map using a Scratch-like easy-to-use visual

programming language is one of the most attractive features

of NetsBlox.

324324

Figure 1. Weather Map application in NetsBlox showing temperatures in the continental US in the morning of January 29, 2017

III. DISTRIBUTED PROGRAMMING PRIMITIVES

The key design decision for NetsBlox was the selection of

distributed programming primitives manifesting themselves

as visual abstractions. In order for the students to engage

with the technology and be able to learn the basics of

distributed computation, these needed to be intuitive, easy-

to-grasp and show the essence of important concepts while

hiding unnecessary complexity. The two main distributed

programming primitives NetsBlox supports are Messages
and Remote Procedure Calls (RPC).

A. Messages

Peer to peer communication is supported by Messages.

Messages are very similar to Events already present in Snap!

and in Scratch. Basically, a separate event handler script

can be defined in any sprite of the application that will be

invoked when the event is generated (see Figure 2).

In NetsBlox, a Message is an Event that contains data

payload. Users are able to drag and drop one or more

variables on the “send msg” block (called broadcast
for events in Snap!). On the receiver side, when they pick

the given message from the list of available ones, these

data items will appear in the “when I receive” block

header as variables with the appropriate names, as shown in

Figure 3.

In order to support complex data payloads, NetsBlox

messages follow a schema specified by their given message
type. A message type is composed of a name and a list of

Figure 2. Scratch event example

Figure 3. Sending and receiving messages with data in NetsBlox

fields defined for the given messages. Message blocks, as

shown in Figure 3, provide a dropdown of all the currently

defined message types; upon selecting a given message type,

the block is updated to show the corresponding data fields.

The message type in Figure 3 has the name “location” which

contains two fields: “lat” and “long”.

325325

As the creation of different distributed applications will

likely require unique messaging protocols, including unique

message types, it is important that users are able to define

their own custom message types. NetsBlox supports this

creation and management of message types similarly to the

creation and management of variables in Snap!. An example

of creating a message type can be found in Figure 4 and the

corresponding message handler is shown in Figure 4.

Figure 4. Custom Message Creation

Figure 5. Chat Message Handler Block

Another important distributed programming primitive is

the concept of a Room. A Room defines the virtual network

for the project and consists of Roles which are named

NetsBlox clients. That is, a Room defines the NetsBlox

clients which share a network and can communicate with

each other using messages. For example, a chess game app

would have two Roles, black and white.

Like the Stage in Scratch, every NetsBlox project auto-

matically has a single associated Room. The project owner

manages the Room and its Roles. This includes creating,

removing, renaming and cloning Roles. Along with building

the structure of the project and its Room, the owner also has

the ability to invite other users to specific Roles in the project

enabling collaboration with other users by delegating parts

of the project to peers. Once a distributed program is ready,

the owner can invite other users to run the program, e.g., to

play the game.

Figure 6 shows the Room for a project called MyRoom
which contains 4 Roles: “alice”, “bob”, “eve”, and “steve.”

The current user is occupying the “alice” role; the other

three roles currently are unoccupied. The + button on the

right allows the owner to add new Roles to the Room; this

will result in another client being added to the project. If

the user clicks on any of the given colored roles, she will

be able to edit the given role (i.e., rename, clone or remove

it) or invite a peer to the given role to collaborate on the

given project. Another example for a room could be that of

a Tic-Tac-Toe game with exactly two roles: “X” and “O.”

When sending NetsBlox messages, the “target” field of

Figure 6. NetsBlox Room

the message is populated with the other Roles present in the

given Room as well as two broadcasting options: “others

in room” and “everyone in room”. Both broadcast options

will send the message to all other Roles in the room, but

“everyone in room” will also trigger the given message

handlers in the Role of the sender. Figure 7 shows one

example for sending a simple message in the context of the

Room in Figure 6. The items in the addressee pull-down

menu are dynamically populated given the Roles currently

defined in the Room. This simplifies the process of sending

messages and reduces the likelihood of simple routing errors.

Figure 7. Sending messages to other NetsBlox clients

The semantics of Messages in NetsBlox are based on

the semantics of Events in Scratch and Snap! [4]. Multiple

handlers can be defined for the same kind of message and all

of them will be invoked when a message of the given type

arrives, each in its own thread, but the order of execution

is not specified. However, two messages sent from the same

script are guaranteed to be delivered in the same order as

they were sent. Furthermore, when two roles send messages,

the order of delivery is guaranteed to be consistent. That is,

if roles A and B send one message each to every other role

at the same time, all roles will get these in the same order.

The order is decided by the message arrival time on the

server.

Message passing is asynchronous, hence, the sender is

not blocked and no acknowledgements are returned either.

Note that if a message handler is still executing when a new

message of the same type arrives, the new message is queued

326326

and will execute once the current execution has completed.

Multiple message handlers for the same message type will

all be executed in parallel for every received message of the

given type.

It is interesting to note that messages are addressed to

one or more Roles of the Room, that is, nodes participating

in the virtual network defined by the application. Within a

Role, that is, the NetsBlox program running on one host

(computer or browser tab), messages are broadcast just like

events. This means that any sprite, and the stage as well,

can receive and handle any and all message types.

To illustrate the concepts introduced above, let us consider

a simple example. Figure 8 shows a 2-person dice game. The

idea is that two players both roll their dice and whoever has

a higher number wins. In case of a tie, they roll again.

Figure 8. The scripts of the Dice game

The program is symmetrical in that both players (Roles)

use the exact same scripts. The game is started by one

player clicking the green flag. The script corresponding to

this event sends a message to every role to start the game.

The corresponding message handler picks a random number

between 1 and 6, shows the correct costume, i.e., side of

the dice, and sends a “roll” message to the “others in room”

that is, the other player. Not naming the other Role explicitly

makes it possible to have the exact same code for both Roles.

The script with the “when I receive roll” header runs once

the “roll” message arrives and it supplies the data in the

payload as the variable called “roll”. The code then simply

compares the two values, the local “dice” and the remote

“roll”. The interesting case is when the two are equal. In this

case, each player rolls again and send the new dice value to

the other side using another “roll” message. Otherwise, the

players are notified about the outcome of the game by a text

displayed on the stage.

B. Remote Procedure Calls (RPC)

RPCs are the highest level of distributed abstraction

NetsBlox employs. An RPC allows for invoking code that

will be executed at a remote location, and then (optionally)

getting back the results of the computation. The seman-

tics of RPCs are as expected: multiple input arguments,

single output argument, pass-by-value and blocking call.

Syntactically, RPCs appear as a reporter block on the block

palette in NetsBlox; however, they are often packaged in

custom blocks as convenient, more user friendly libraries.

This allows the blocks to be represented in a more intuitive

way as custom blocks can be a different type of block

(e.g., an RPC without a return value may use a command

block) or can be assigned to a different color to make their

functionality more apparent. The block for calling RPCs is

shown in Figure 9.

Figure 9. Calling a NetsBlox Service

Related RPCs are grouped into Services. As shown in

Figure 9, the block for calling RPCs is a reporter block with

two drop-down menus. The first drop-down is dynamically

populated with the supported Services of the given NetsBlox

server. The second drop-down is populated with the RPCs

of the given Service. In the given example, the block is

set to the weather Service and the second drop-down is

populated with all weather-related RPCs. These include

temp, humidity, windSpeed, etc. After selecting an RPC, the

block is updated to provide named fields for each argument

for the given function. An example of this is shown in

Figure 10. Also see Figure 1 for an additional example of

using the Map Service.

Figure 10. Getting the current temperature with the Weather Service

327327

Note that a Service can also include message types and

server initiated messages. For example, the Earthquake Ser-

vice has a single RPC called “trigger earthquake messages”

which is called with coordinates of the area of interest. In

turn, the Service will gather historical earthquakes from the

web and send one message per earthquake event to the user,

i.e., the caller of the RPC. Each such message contains the

location, magnitude and date of the given seismic event.

NetsBlox Services also have the ability to maintain state.

This state can be shared either globally or just among the

users in the given NetsBlox room. Examples of services

using a global context can be found in the services exposing

3rd party endpoints, such as Google Maps, as they often

cache their results to minimize redundant requests to the

given external API.

Similarly, for multi-player games, one of the main chal-

lenges can be maintaining the game state and enforcing

the rules. For example, implementing a chess, poker or

even a battleship application in a visual language is a non-

trivial undertaking. The NetsBlox Service concept makes

it possible to move the most challenging aspects of such

games to the server. For example, the Battleship Helper

Service provides assistance in turn coordination and game

state management. This includes maintaining whether the

players are still placing ships or have already proceeded to

shooting at one another, storing the list of hits and misses,

as well as enforcing the turn-based nature of the game.

These kinds of Services generally send messages to notify

the players (Roles) of important events, such as “your turn”

or “game over” and expect RPC invocations about the users

actions.

Currently, NetsBlox supports a fixed set of Services that

run on a NetsBlox server. From the user’s perspective,

services are executing “in the cloud”. In the near future, we

will enable users to host one Role of their program on the

server, in effect creating their own Service. Custom blocks

defined for the given Role will become RPCs and they will

be able to send messages as well. This will be one way to

support the extensibility of NetsBlox.

C. Dynamic Virtual Networks

The Room concept provides an easy-to-understand ab-

straction for students to implement their programs that in-

clude more than one computer. However, its inherently static

nature can prove to be inflexible for various applications.

What if we wanted to write a program with a varying

number of users, i.e., Roles? What if we wanted to allow

two different NetsBlox programs to message each other?

NetsBlox supports more dynamic networking with the

Public Role Id Service that allows users to request a public

id, a kind of address, which can be used to facilitate inter-

room communication. That is, a user can request a public

role id and share this id with other users via email or text

message. The other users can then send messages to this id.

The NetsBlox server will then resolve these public ids to the

initial user and route the messages accordingly.

A simple illustration of using the Public Roles Service is

shown in Figure 11. In this example, when the green flag is

pressed the program request a public role id. It then records

this id and announces it to the user so he/she can easily

share it with others.

Figure 11. Requesting a Public Role Id

Figure 12 shows the other side. In this example, the user

is first prompted for the public role id of the recipient.

Then the program requests its own public role id so it can

receive any responses. Finally, the program sends a message

to the recipient that includes a message and its public role

id. This example illustrates the simplicity of inter-room

communication; rather than introducing an entirely new

concept, public roles simply build on the existing concepts

in an intuitive and natural way. This gradual progression

should simplify the transition from building applications

in a small, clearly defined network (the Room) to more

flexible, scalable applications which include a higher degree

of uncertainty and complexity.

Figure 12. Sending message to a public role

A good use of this facility is an illustration of the “mas-

sively” parallel, volunteer computing concept. For example,

prime factorization is embarrassingly parallel and simple

enough to implement in NetsBlox. A master program can

request a public role id and wait for worker programs to

connect. In turn, it can send messages to the workers to

test possible factors one by one. The master distributes the

work and gathers and combines the results. A brief video

demonstration of this application can be found at [17].

The public role id concept, when used in conjunction with

NetsBlox messages, also allows users to develop higher level

messaging patterns, such as Publish-Subscribe shown in Fig-

ure 13. In this example, we have created a Publish-Subscribe

broker which has defined 4 different message types: pub-
lish, subscribe, unsubscribe and update. The broker then

maintains a variable called “subscriptions” which contains

328328

Figure 13. Publish-Subscribe Broker in NetsBlox

a list of topics and the associated subscribers. On subscribe
and unsubscribe events, the broker will add or remove the

requestor from it’s internal record of subscriptions. On a

publish event, the broker will send an update message with

the topic and the content to all of the Roles subscribed to

the given topic.

An example of a subscriber is shown in Figure 14. The

user is first prompted about which Publish-Subscribe broker

to connect to and a public role id is requested. On pressing

the “s” key, the user is prompted about which topic he/she

would like to subscribe to and the broker is sent a subscribe
message with the topic and the client’s public role id. When

data for this topic is published to the broker, the client will

receive the update message (as shown in Figure 13) which

will simply display the update to the user.

Figure 14. Subscribe Client in NetsBlox

Although this is a relatively simple example, it demon-

strates the ability to compose higher level messaging patterns

completely within NetsBlox. Building higher-level abstrac-

tions from the NetsBlox primitives allows users to not only

use these messaging patterns but also to understand them on

a lower level. Alternatively, providing these patterns as built-

in concepts would allow users to understand how to use them

but would not enable them to open the actual implementation

and gain a deeper understanding of the concepts.

IV. CONCLUSIONS AND FUTURE WORK

The paper presented NetsBlox, a web- and cloud-based

visual programming environment that enables users to create

distributed applications. NetsBlox extends the well-known

and widely used Snap! environment and hence, it provides

natural progression to students who take the Beauty and Joy

of Computing (BJC) class and consequently, novel curricular

units can be easily incorporated into BJC, one of the new

AP CS Principles courses [18]. NetsBlox is an ideal vehicle

to support some of the big ideas and computational thinking

practices that the AP CS Principles curriculum emphasizes.

These include the Internet, communicating, collaborating,

cybersecurity and global impact.

Furthermore, providing access to vast arrays of data on

the Internet right from the visual programming environment

in a uniform manner will empower the students to create

innovative science projects and bring STEM concepts into

CS education at the same time. The ability to create multi-

player games will provide increased motivation for a large

329329

number of students making them creators and not just

consumers of digital entertainment.

Nevertheless, NetsBlox is in its infancy. While the dis-

tributed computing primitives are fully implemented, the

robustness of the tool needs to be improved. The most

promising feature we are working on is collaborative editing

of a project by multiple students similarly to how Google

Docs works. This will enable pair programming, group

projects and other novel forms of collaboration even outside

of the classroom. Our future work also involves adding a lot

of new services and data sources to NetsBlox in the form

of a large library of services. Equally important is to create

new curricular modules that can be incorporated to existing

courses such as the BJC. Finally, extensive classroom studies

need to be developed and executed to steer the ongoing

development of NetsBlox in the right direction.

V. ACKNOWLEDGEMENTS

We thank Pratim Sengupta for his contributions during

the initial discussions about NetsBlox. Funding from the

Trans-institutional Programs (TIPs) of Vanderbilt University

made possible to start the development of the tool. This

material is also based in part upon work supported by the

National Science Foundation under Grant Numbers CNS-

1644848 and DRL-1640199. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Communications of
the ACM, Viewpoint, vol. 49, no. 3, pp. 33–35, Mar. 2006.

[2] Committee for the Workshops on Computational Thinking;
National Research Council, Report of a Workshop on
The Scope and Nature of Computational Thinking. The
National Academies Press, 2010. [Online]. Available:
http://www.nap.edu/openbook.php?record id=12840

[3] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan,
and A. L. Hosking, “A multidisciplinary approach towards
computational thinking for science majors,” in Proceedings
of the 40th ACM technical symposium on Computer
science education, ser. SIGCSE ’09. New York, NY,
USA: ACM, 2009, pp. 183–187. [Online]. Available:
http://doi.acm.org/10.1145/1508865.1508931

[4] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. East-
mond, “The scratch programming language and environment,”
ACM Transactions on Computing Education (TOCE), vol. 10,
no. 4, p. 16, 2010.

[5] C. Kelleher and R. Pausch, “Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers,” ACM Comput.
Surv., vol. 37, no. 2, pp. 83–137, Jun. 2005. [Online].
Available: http://doi.acm.org/10.1145/1089733.1089734

[6] P. Sengupta, J. Kinnebrew, S. Basu, G. Biswas, and
D. Clark, “Integrating computational thinking with k-
12 science education using agent-based computation:
A theoretical framework,” Education and Information
Technologies, vol. 18, no. 2, pp. 351–380, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10639-012-9240-x

[7] P. Blikstein and U. Wilensky, “An atom is known by the
company it keeps: A constructionist learning environment for
materials science using agent-based modeling,” International
Journal of Computers for Mathematical Learning, vol. 14,
no. 2, pp. 81–119, 2009. [Online]. Available: http:
//dx.doi.org/10.1007/s10758-009-9148-8

[8] I. C. S. The Joint Task Force on Computing Curricula,
Association for Computing Machinery (ACM), “Computer
science curricula 2013: Curriculum guidelines for undergrad-
uate degree programs in computer science,” http://www.acm.
org/education/CS2013-final-report.pdf, 2013.

[9] B. Broll, A. Lédeczi, P. Völgyesi, J. Sallai, M. Maróti,
S. Wieden-Wright, A. Melo, and C. Vanags, “A visual
programming environment for learning distributed program-
ming,” in Proceedings of the 48th ACM Technical Symposium
on Computing Science Education. ACM, 2017.

[10] B. Harvey and J. Mönig, “Bringing no ceiling to scratch: can
one language serve kids and computer scientists,” in Proc. of
Constructionism, pp. 1–10, 2010.

[11] “Snap!: a visual, drag-and-drop programming language,” http:
//snap.berkeley.edu/snapsource/snap.html, cited 2016 March
16.

[12] E. Klopfer, S. Yoon, and T. Um, “Teaching complex
dynamic systems to young students with starlogo,” Journal
of Computers in Mathematics and Science Teaching, vol. 24,
no. 2, pp. 157–178, April 2005. [Online]. Available:
http://www.editlib.org/p/5537

[13] M. J. Conway, “Alice: Easy–to–Learn 3D Scripting for
Novices,” Master’s thesis, University of Virginia, Faculty of
the School of Engineering and Applied Science, December
1997.

[14] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Learning
computer science concepts with scratch,” Computer Science
Education, vol. 23, no. 3, pp. 239–264, 2013.

[15] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,
“Programming by choice: urban youth learning programming
with scratch,” in ACM SIGCSE Bulletin, vol. 40. ACM,
2008, pp. 367–371.

[16] “The Beauty and Joy of Computing,” http://bjc.berkeley.edu/,
cited 2016 May 14.

[17] “Prime Factorization in NetsBlox,” https://www.youtube.com/
watch?v=-qS7hGowQKQ, cited 2017 January 15.

[18] O. Astrachan and A. Briggs, “The CS principles project,”
ACM Inroads, vol. 3, no. 2, pp. 38–42, 2012.

330330

